Code: 20IT6701

IV B.Tech - I Semester - Regular Examinations - DECEMBER 2023

APPLICATIONS OF DEEP LEARNING (HONORS in INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

					3.6			
			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	What is deep learning? How is it different	L2	CO1	7 M			
		from traditional machine learning?						
	b)	Explain how Deep Learning is associated to	L2	CO1	7 M			
		Biological Inspiration?						
	OR							
2	a)	Compare Deep Learning with Artificial	L2	CO2	7 M			
		Intelligence in various applications.						
	b)	Summarize the Common Architectural	L2	CO2	7 M			
		Principles of Deep Networks.						
UNIT-II								
3	a)	What are Auto encoders? Explain.	L2	CO2	7 M			
	b)	Explain RBM with a neat Diagram.	L2	CO2	7 M			
OR								
4	a)	Demonstrate Deep Belief Network with	L3	CO2	7 M			
		example.						

	ı							
	b)	Demonstrate GAN to build a model.	L3	CO2	7 M			
UNIT-III								
5	a)	Illustrate Convolution operation in	L3	CO1	7 M			
		Convolutional Neural Network.						
	b)	What is max pooling? Explain.	L3	CO1	7 M			
OR								
6	a)	Demonstrate Variants of the Basic	L3	CO4	7 M			
		Convolution Function.						
	b)	Demonstrate Unsupervised Features of	L3	CO4	7 M			
		CNN.						
				1				
		UNIT-IV						
7	a)	Illustrate Recurrent Neural Networks.	L3	CO3	7 M			
	b)	Explain about Long Short-Term Memory.	L2	CO3	7 M			
	l	OR						
8	a)	Write short notes on Sequence-Sequence	L2	CO1	7 M			
		Architectures.						
	b)	Demonstrate how Recurrent Neural	L3	CO1	7 M			
		Networks are extended to Deep Recurrent						
		Networks?						
	I			1				
		UNIT-V						
9	a)	List the applications of deep learning in	L2	CO3	7 M			
		Natural language processing.						
	b)	Explain Speech recognition with real time	L2	CO3	7 M			
		example.						
OR								

10	a)	Explain how image segmentation is c	lone L3	CO3	7 M
		using Computer Vision?			
	b)	Illustrate how TF/IDF is used to ider	ntify L3	CO3	7 M
		frequency of words in NLP?			